Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 5735, 2024 03 08.
Article in English | MEDLINE | ID: mdl-38459086

ABSTRACT

The spike protein (S) of SARS-CoV-2 induces neutralizing antibodies and is the key component of current COVID-19 vaccines. The most efficacious COVID-19 vaccines are genetically-encoded spikes with a double proline substitution in the hinge region to stabilize S in the prefusion conformation (S-2P). A subunit vaccine can be a valuable addition to mRNA and viral vector-based vaccines but requires high stability of spike. In addition, further stabilization of the prefusion conformation of spike might improve immunogenicity. To test this, five spike proteins were designed and characterized, ranging from low to high stability. The immunogenicity of these proteins was assessed in mice, demonstrating that a spike (S-closed-2) with a high melting temperature, which still allowed ACE2 binding, induced the highest neutralization titers against homologous and heterologous strains (up to 16-fold higher than the least stabilized spike). In contrast, the most stable spike variant (S-locked), in which the receptor binding domains (RBDs) were locked in a closed conformation and thus not able to breathe, induced relatively low neutralizing antibody titers against heterologous strains. These data demonstrate that S protein stabilization with RBDs exposing highly conserved epitopes may be needed to increase the immunogenicity of spike proteins for future COVID-19 vaccines.


Subject(s)
COVID-19 , Viral Vaccines , Mice , Humans , Animals , SARS-CoV-2 , COVID-19 Vaccines , Antibodies, Viral , Spike Glycoprotein, Coronavirus/metabolism , COVID-19/prevention & control , Antibodies, Neutralizing
3.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35131851

ABSTRACT

For an efficacious vaccine immunogen, influenza hemagglutinin (HA) needs to maintain a stable quaternary structure, which is contrary to the inherently dynamic and metastable nature of class I fusion proteins. In this study, we stabilized HA with three substitutions within its pH-sensitive regions where the refolding starts. An X-ray structure reveals how these substitutions stabilize the intersubunit ß-sheet in the base and form an interprotomeric aliphatic layer across the stem while the native prefusion HA fold is retained. The identification of the stabilizing substitutions increases our understanding of how the pH sensitivity is structurally accomplished in HA and possibly other pH-sensitive class I fusion proteins. Our stabilization approach in combination with the occasional back mutation of rare amino acids to consensus results in well-expressing stable trimeric HAs. This repair and stabilization approach, which proves broadly applicable to all tested influenza A HAs of group 1 and 2, will improve the developability of influenza vaccines based on different types of platforms and formats and can potentially improve efficacy.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinins/genetics , Amino Acids/genetics , Cell Line , Humans , Hydrogen-Ion Concentration , Influenza Vaccines/genetics , Influenza, Human/virology , Mutation/genetics , Protein Conformation, beta-Strand/genetics
4.
Nat Commun ; 12(1): 244, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33431842

ABSTRACT

The trimeric spike (S) protein of SARS-CoV-2 is the primary focus of most vaccine design and development efforts. Due to intrinsic instability typical of class I fusion proteins, S tends to prematurely refold to the post-fusion conformation, compromising immunogenic properties and prefusion trimer yields. To support ongoing vaccine development efforts, we report the structure-based design of soluble S trimers with increased yields and stabilities, based on introduction of single point mutations and disulfide-bridges. We identify regions critical for stability: the heptad repeat region 1, the SD1 domain and position 614 in SD2. We combine a minimal selection of mostly interprotomeric mutations to create a stable S-closed variant with a 6.4-fold higher expression than the parental construct while no longer containing a heterologous trimerization domain. The cryo-EM structure reveals a correctly folded, predominantly closed pre-fusion conformation. Highly stable and well producing S protein and the increased understanding of S protein structure will support vaccine development and serological diagnostics.


Subject(s)
SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Cryoelectron Microscopy , Humans , Models, Molecular , Mutation , Protein Conformation , Protein Domains , Protein Stability , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics
5.
Nat Commun ; 6: 8143, 2015 Sep 03.
Article in English | MEDLINE | ID: mdl-26333350

ABSTRACT

Respiratory syncytial virus (RSV) causes acute lower respiratory tract infections and is the leading cause of infant hospitalizations. Recently, a promising vaccine antigen based on the RSV fusion protein (RSV F) stabilized in the native prefusion conformation has been described. Here we report alternative strategies to arrest RSV F in the prefusion conformation based on the prevention of hinge movements in the first refolding region and the elimination of proteolytic exposure of the fusion peptide. A limited number of unique mutations are identified that stabilize the prefusion conformation of RSV F and dramatically increase expression levels. This highly stable prefusion RSV F elicits neutralizing antibodies in cotton rats and induces complete protection against viral challenge. Moreover, the structural and biochemical analysis of the prefusion variants suggests a function for p27, the excised segment that precedes the fusion peptide in the polypeptide chain.


Subject(s)
Antibodies, Neutralizing/immunology , Antigens, Viral/immunology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Viruses/immunology , Viral Fusion Proteins/immunology , Animals , Antigens, Viral/genetics , Blotting, Western , Crystallization , Crystallography, X-Ray , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Mice , Microscopy, Electron , Mutation , Protein Conformation , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Viruses/genetics , Sigmodontinae , Viral Fusion Proteins/genetics
6.
Infect Immun ; 82(11): 4654-65, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25156724

ABSTRACT

Model antigens are frequently introduced into pathogens to study determinants that influence T-cell responses to infections. To address whether an antigen's subcellular location influences the nature and magnitude of antigen-specific T-cell responses, we generated Plasmodium berghei parasites expressing the model antigen ovalbumin (OVA) either in the parasite cytoplasm or on the parasitophorous vacuole membrane (PVM). For cytosolic expression, OVA alone or conjugated to mCherry was expressed from a strong constitutive promoter (OVAhsp70 or OVA::mCherryhsp70); for PVM expression, OVA was fused to HEP17/EXP1 (OVA::Hep17hep17). Unexpectedly, OVA expression in OVAhsp70 parasites was very low, but when OVA was fused to mCherry (OVA::mCherryhsp70), it was highly expressed. OVA expression in OVA::Hep17hep17 parasites was strong but significantly less than that in OVA::mCherryhsp70 parasites. These transgenic parasites were used to examine the effects of antigen subcellular location and expression level on the development of T-cell responses during blood-stage infections. While all OVA-expressing parasites induced activation and proliferation of OVA-specific CD8(+) T cells (OT-I) and CD4(+) T cells (OT-II), the level of activation varied: OVA::Hep17hep17 parasites induced significantly stronger splenic and intracerebral OT-I and OT-II responses than those of OVA::mCherryhsp70 parasites, but OVA::mCherryhsp70 parasites promoted stronger OT-I and OT-II responses than those of OVAhsp70 parasites. Despite lower OVA expression levels, OVA::Hep17hep17 parasites induced stronger T-cell responses than those of OVA::mCherryhsp70 parasites. These results indicate that unconjugated cytosolic OVA is not stably expressed in Plasmodium parasites and, importantly, that its cellular location and expression level influence both the induction and magnitude of parasite-specific T-cell responses. These parasites represent useful tools for studying the development and function of antigen-specific T-cell responses during malaria infection.


Subject(s)
Gene Expression Regulation/physiology , Malaria/parasitology , Ovalbumin/metabolism , Plasmodium berghei/metabolism , Protein Transport/physiology , Animals , Female , Malaria/blood , Mice , Organisms, Genetically Modified , Ovalbumin/genetics , Plasmodium berghei/genetics , Spleen/cytology , T-Lymphocytes/physiology
7.
Cell Microbiol ; 15(12): 2093-108, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23902464

ABSTRACT

The causative agent of tuberculosis (TB), Mycobacterium tuberculosis, remains an important worldwide health threat. Although TB is one of the oldest infectious diseases of man, a detailed understanding of the mycobacterial mechanisms underlying pathogenesis remains elusive. Here, we studied the role of the α(1→2) mannosyltransferase MptC in mycobacterial virulence, using the Mycobacterium marinum zebrafish infection model. Like its M. tuberculosis orthologue, disruption of M. marinum mptC (mmar_3225) results in defective elongation of mannose caps of lipoarabinomannan (LAM) and absence of α(1→2)mannose branches on the lipomannan (LM) and LAM mannan core, as determined by biochemical analysis (NMR and GC-MS) and immunoblotting. We found that the M. marinum mptC mutant is strongly attenuated in embryonic zebrafish, which rely solely on innate immunity, whereas minor virulence defects were observed in adult zebrafish. Strikingly, complementation with the Mycobacterium smegmatis mptC orthologue, which restored mannan core branching but not cap elongation, was sufficient to fully complement the virulence defect of the mptC mutant in embryos. Altogether our data demonstrate that not LAM capping, but mannan core branching of LM/LAM plays an important role in mycobacterial pathogenesis in the context of innate immunity.


Subject(s)
Lipopolysaccharides/metabolism , Mycobacterium marinum/immunology , Mycobacterium marinum/pathogenicity , Phosphoenolpyruvate Sugar Phosphotransferase System/metabolism , Animals , Bacterial Load , Immunity, Innate , Lipopolysaccharides/chemistry , Mannose/chemistry , Mycobacterium Infections, Nontuberculous/immunology , Mycobacterium marinum/genetics , Mycobacterium smegmatis/pathogenicity , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/pathogenicity , Phosphoenolpyruvate Sugar Phosphotransferase System/genetics , Tuberculosis/immunology , Zebrafish/immunology , Zebrafish/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...